Distributed Gibbs Sampling of Latent Topic Models: The Gritty Details THIS IS AN EARLY DRAFT. YOUR FEEDBACKS ARE HIGHLY APPRECIATED
نویسنده
چکیده
منابع مشابه
A Theoretical and Practical Implementation Tutorial on Topic Modeling and Gibbs Sampling
This technical report provides a tutorial on the theoretical details of probabilistic topic modeling and gives practical steps on implementing topic models such as Latent Dirichlet Allocation (LDA) through the Markov Chain Monte Carlo approximate inference algorithm Gibbs Sampling.
متن کاملDistributed Inference for Latent Dirichlet Allocation
We investigate the problem of learning a widely-used latent-variable model – the Latent Dirichlet Allocation (LDA) or “topic” model – using distributed computation, where each of processors only sees of the total data set. We propose two distributed inference schemes that are motivated from different perspectives. The first scheme uses local Gibbs sampling on each processor with periodic update...
متن کاملGibbs max-margin topic models with data augmentation
Max-margin learning is a powerful approach to building classifiers and structured output predictors. Recent work on max-margin supervised topic models has successfully integrated it with Bayesian topic models to discover discriminative latent semantic structures and make accurate predictions for unseen testing data. However, the resulting learning problems are usually hard to solve because of t...
متن کاملOnline Sparse Collapsed Hybrid Variational-Gibbs Algorithm for Hierarchical Dirichlet Process Topic Models
Topic models for text analysis are most commonly trained using either Gibbs sampling or variational Bayes. Recently, hybrid variational-Gibbs algorithms have been found to combine the best of both worlds. Variational algorithms are fast to converge and more efficient for inference on new documents. Gibbs sampling enables sparse updates since each token is only associated with one topic instead ...
متن کاملDistributed Algorithms for Topic Models
We describe distributed algorithms for two widely-used topic models, namely the Latent Dirichlet Allocation (LDA) model, and the Hierarchical Dirichet Process (HDP) model. In our distributed algorithms the data is partitioned across separate processors and inference is done in a parallel, distributed fashion. We propose two distributed algorithms for LDA. The first algorithm is a straightforwar...
متن کامل